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1. Multi-Armed Bandit with Knapsack

• Bandit: Consider the bandit machine has 𝑚 arms 

with fixed but unknown mean reward 𝜇𝑖 and mean 

cost 𝒄𝑖 ∈ 𝐑+
𝑑 for 𝑖 in 1,… ,𝑚

• Knapsack: Known total budget 𝑩 ∈ 𝐑+
𝑑 and the

length of time horizon 𝑇
• Rule: The decision maker selects one arm to pull at 

each step and then observes the realized reward 

and cost of the chosen arm

• Goal: Maximize the total reward until any type of 

budgets is depleted or time up.

2. Underlying Linear Programming Problem

• The optimal objective value OPTLP of the following 

LP is an upper bound of the expected optimal 

reward, 
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where 𝝁 = 𝜇1, … , 𝜇𝑚
T, 𝑪 = 𝒄1, … , 𝒄𝑚 , and 𝒙 =

𝑥1, … , 𝑥𝑚
T ∈ 𝐑𝑚. Denote 𝒙∗ as its optimal solution 

and OPTLP as its optimal objective value

• If the model is deterministic, the solution of the 

above LP gives the optimal policy. Here, 𝑥𝑖
represents the number of drawing 𝑖-th arm.

• Denote 𝓘∗ = {𝑖: 𝑥𝑖
∗ > 0} as the index set of optimal 

arms, 𝓙∗ = {𝑗: 𝑩 > 𝑪𝒙∗ 𝑗} as the index set of 

binding resources, and 𝓘’ and 𝓙′ as index sets of 

sub-optimal arms and non-binding resources, 
respectively.

3. Motivation- A Regret Upper Bound

• The regret can be bounded by 

σ
𝑖∈𝓘’Δ𝑖𝐄[𝑛𝑖] + 𝐄 𝑩 𝝉 T

𝒚∗, where Δ𝑖 is the reduced 

cost for the 𝑖-th arm, 𝑛𝑖 is the number of times that

𝑖-th arm is pulled, 𝑩 𝝉 is the remaining resources 

at the termination time, and 𝒚∗ is the optimal dual 

price.

• The first term is interpreted as the cost of playing 

sub-optimal arms; the second term is interpreted 
as the cost of wasted binding resources. 

Thus, to maximize the reward, the decision maker 

should

• play less sub-optimal arms (optimal arms

identification)

• fully consume binding resources (binding resources

identification and adaptively procedure to play 

optimal arms)

6. Primal-dual Adaptive Algorithm

4. Symmetry between Arms and Knapsack

• With mild conditions, |𝓘∗| = |𝓙∗|.
• Denote OPT𝑖 as the optimal objective value of 

following LP,

1111111111111111111111111111111111111111

1111111111111111111111111111111111111111

then, 𝑖 ∈ 𝓘∗ ⇔ OPT𝑖 = OPTLP and 𝑖 ∈ 𝓘′ ⇔ OPT𝑖 <
OPTLP.

• Denote OPT𝑗 as the optimal objective value of 

following LP,
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Then, 𝑗 ∈ 𝓙∗ ⇔ OPT𝑗 = OPTLP and 𝑗 ∈ 𝓙′ ⇔

OPT𝑗 < OPTLP.

• Set 𝛿 =
1

𝑇
(OPTLP−max{max

𝑖∈𝓘∗
{OPT𝑖},max

𝑗∈𝓙′
{OPT𝑗}}) .

It characterizes the hardness of distinguishing 

optimal arms from non-optimal arms, and binding 

resources from non-binding resources.

• 𝛿 is also a generalization of the sub-optimality 

measure for multi-armed bandit problem.

5. UCB and LCB

• When the sample size is not large enough, the bias 

between real mean and sample mean might be 

large. This difference might mislead the algorithm 

to find true optimal arms and binding resources. To

avoid this case, we apply the upper confidence 

bound and lower confidence bound techniques by 

considering both UCB and LCB of rewards and 

costs of each arm instead of sample mean as 

literatures.

• Denote 𝝁𝑈, 𝝁𝐿 as the UCB and LCB of 𝝁, and 

denote 𝑪𝑈, 𝑪𝐿 as the UCB and LCB of 𝑪. The 

optimal objective value of following two LPs are 

UCB and LCB of OPTLP.

• OPTLP
𝑈 and OPTLP

𝐿 converge to OPTLP
• Similarly, define OPT𝑖

𝑈, OPT𝑗
𝑈, OPT𝑖

𝐿 and OPT𝑗
𝐿 for all 

arms and resources. They also satisfy the convergence 
property.

• As the size of samples are large enough, following 

inequalities hold: OPTLP
𝐿 > OPT𝑖

𝑈 for all optimal-arms 

and OPTLP
𝐿 > OPT𝑗

𝑈 for all non-binding resources. 

However, OPTLP
𝐿 ≤ OPT𝑖

𝑈 and OPTLP
𝐿 ≤ OPT𝑗

𝑈 always 

hold for all sub-optimal arms and non-binding resources

7. Theoretical Analysis

• During the Phase one, each arm will be played for no 

more than 𝑂(
log 𝑇

𝛿2
) times. Moreover,  with probability 

no less than 1 − 𝑂
1

𝑇2
, the algorithm can identify true 

optimal arms and binding resources.

• If the budget is large enough, 𝐄 𝑩 𝝉 = O(
1

𝛿2
)

• The regret of this algorithm can be bounded by 

𝑂(
log 𝑇

𝛿2
)


