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• LCLS (Linac Coherent Light Source) is frequently prone to
unplanned downtime and unexpected failures that are
difficult to pinpoint and correct

• Failures cause significant beam degradation or loss

• A common, high priority failure mode is klystron faults

• The 250 klystrons power the LCLS x-ray laser’s accelerator

• We combine two sources of LCLS data

1. Beam-based data at full 120 Hz rate

2. Klystron health data at slow rate

• Full-rate beam data (120 Hz)

• 174 beam position monitors (BPMs)

• Each BPM measures:

1. X (position)

2. Y (position)

3. TMIT (transmitted charge intensity)

• Klystron health data (<0.2 Hz)

• 13 health (0/1) indicators

• Several other raw signals

• Klystron faults affect the laser’s energy, which manifests
as change in position at a subset of BPMs

• Klystron faults are normally indicated by a health
indicator AMM (Amplitude Mean Out of Tolerance) and
its underlying signal AMPL (Amplitude)

• To find klystron faults

• To attribute each fault to the correct klystron

• To classify the severity of the fault
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Results

• 3300 uniquely identifiable fault candidates from 11/2 – 12/10

• Using hand labels (Fault/No Fault), we find our method is 96.3%
accurate, confirming 521 real faults

• AMPL identifies 238 faults that AMM misses

• Klystron faults can be grouped into three categories: Pulse,
Sustained, and Catastrophic

• A classifier is >85% accurate in labeling a fault candidate as No,
Pulse, Sustained, or Catastrophic fault

Conclusions

• Fully automated system to identify and
confirm klystron faults

• Using beam data rejects almost all the
false candidates

• Using AMPL detects significantly more
klystron faults than AMM alone

• These labeled faults can be used as a
supervision source for ongoing
anomaly detection work
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1. Identify fault candidates using AMM and AMPL signals

2. Load BSA data for subset of BPMs (i.e., dispersive bpms)

3. Get per-signal anomaly score from univariate anomaly
detection algorithm Modified Spectral Residual (MSR)

4. Aggregate score across space (i.e., downstream BPMs)

5. Aggregate score across time (i.e., consecutive beam pulses)


