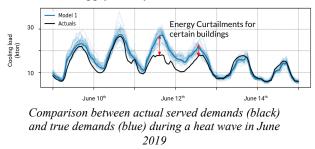


Market Design for Energy Resource Allocation

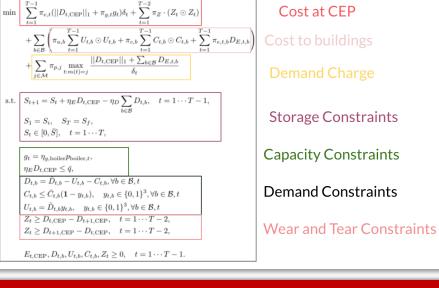
Devansh Jalota¹, Jacques de Chalendar², Yinyu Ye³, Marco Pavone⁴


¹ Institute for Computational and Mathematical Engineering, Stanford University

- ² Department of Energy Resources Engineering, Stanford University
- ³ Management Science and Engineering, Stanford University
- ⁴ Department of Aeronautics and Astronautics, Stanford University

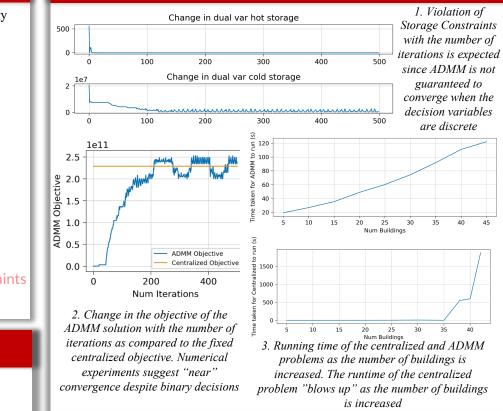
Introduction and Motivation

During heat waves there is a severe misallocation of energy resources, with a large discrepancy between demand and supply on days two and three of the heat



Building Heterogeneity and stochasticity in weather conditions add additional layers of complexity:

- 1. Cost function may differ by building
- 2. Weather conditions and individual building demands are uncertain


The deterministic centralized optimization problem optimally allocates energy between buildings

ADMM for Distributed Optimization

Results of Applying ADMM

Future Work

- I. Incorporate stochastic uncertainties to inform energy allocation decisions
- 2. Investigate fairness notions in the objective to ensure that all buildings get a certain proportion of requested demand
- 3. Distributed implementation through market prices in the stochastic setting