Hybrid RANS-LES of the Atmospheric Boundary Layer for Wind Farm Simulations at Exascale

Christiane Adcock¹, Jeremy Melvin², Shreyas Ananthan², Ganesh Vijayakumar², Gianluca Iaccarino¹, Marc Henry de Frahan² ¹Stanford University. ²The National Renewable Energy Laboratory. Contact: janiad@stanford.edu

ExaWind [1]: blade resolved simulation of 4-9 wind turbines in realistic atmospheric boundary layer (ABL) in 4x4 km area for one flowthrough time within four weeks of system time

Nalu-Wind [2]: unstructured-grid solver for incompressible Navier-Stokes eqns.

Capture effects of wake-ABL interaction and blade BL

Active Model Split [3]

Hybrid RANS-LES: unsteady RANS near walls, LES elsewhere

Key components:

1. Model split

$$D_{t}\overline{u_{i}} = -\partial_{i}\overline{p} + \eta\partial_{j}\partial_{j}\overline{u_{i}} + \partial_{j}\left(\tau_{ij}^{m} + \tau_{ij}^{e}\right) + F_{i}$$

- τ^m_{ij} : mean subgrid stress (\approx RANS)
- τ_{ij}^e : fluctuating subgrid stress (\approx LES); responsible for energy transfer from resolved to unresolved
- 2. Active forcing
 - F_i : generate resolved fluctuations
- 3. Resolution adequacy indicator Force where grid can resolve more fluctuations

SST $k-\omega$ unsteady RANS model

 $k - \omega$ near wall: overly sensitive to freestream velocity $k - \epsilon$ away from wall: need damping function near wall; inaccurate for adverse pressure gradients

Bautista [4] boundary conditions:

$$u=0; k=rac{u_{ au}^2}{\sqrt{eta^*}}; \omega=rac{u_{ au}}{\sqrt{eta^*}\kappa y}$$

Results

All models capture Coriolis effect AMS captures Coriolis effect better than RANS does

Noise from BC lingers in domain for AMS

SST $k - \omega$ length scale limiter

$$\begin{split} \gamma^* &= \gamma + (\beta - \gamma) \frac{l_t}{l_e} \text{ replaces } \gamma \text{ (analogous to [5])} \\ l_t &= k^{1/2} / (\beta^{*1/4}) \text{: local mixing length} \\ l_e &= .00027G / f_c \text{: maximum mixing length (neutral ABL)} \\ \text{As } l_t / l_e \to 0, \gamma^* \to \gamma \\ \text{As } l_t / l_e \to 1, \gamma^* \frac{\omega}{k} - \beta \rho \omega^2 \to \beta \left(\frac{\omega}{k} P - \rho \omega^2\right) \text{ (limits } l_t) \end{split}$$

Future Work

- Remove AMS active forcing near wall to reduce noise
- Continue developing length scale limiter
- Add non-neutral stability
- Modify M43 LES model to better capture effects of anisotropy (while using only mean quantities)
- Simulate blade resolved wind turbine with realistic ABL

Acknowledgements

This research was supported in part by the U.S. Department of Energy Computational Science Graduate Fellowship under grant DE SC0019323.

Christiane Adcock is supported by a graduate fellowship award from Knight-Hennessy Scholars at Stanford University.

References

 Sprague, M.A., et al. "ExaWind: A Multifidelity modeling and simulation environment for wind energy", J. Phys.: Conf. Ser. 1451 012071 (2020)
Sprague, M. A., Ananthan, S., Vijayakumar, G., Robinson, M., "ExaWind: A multifidelity modeling and simulation environment for wind energy", NAWEA/WindTech (2019)

[3] [2] Hearing, S.W., Oliver, T.A. Moser, R.D., "Active model split hybrid RANS/LES", arXiv (2020)

[4] Bautista, M.C., "Turbulence modelling of the atmospheric boundary layer over complex topography", Ph.D. thesis, Ecole de Technologie Superieure Universite du Quebec (2015)

[5] Koblitz, T., "CFD modeling of non-neutral atmospheric boundary layer conditions", Ph.D. thesis, DTU Wind Energy (2013)