Probabilistic Load Forecasting using Ensemble Weather Forecast
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Motivation

e Accurate prediction of building energy load is
crucial for control optimization and management
of energy resources

*  Numerical Weather Predictions can provide

probabilistic forecasting of weather variables

related to energy demand, but requires some
calibration and statistical-postprocessing

Challenges )
Cooling water consumption are usually
underpredicted during heat waves (rare and
extreme events)

e  Limited amount of data are available for days
with unusually high temperature /
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We can predict the logarithm of cooling load using
weather forecast and historical data:

Linear Regression with
Autoregressive Errors

log(ct) = ﬂt + (O + €, W = A1 W1 + ArWe_p
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Gaussian Process Regression

Denote x as our weather forecast variable and f(x) as
our true observation of temperature, then we
construct our model using the following covariance
matrix:

Cov(f(xl), f(xz)) = C(xq,x3)
Then given training data,
Yerain = (F(x1), o, f(X0) ), Xerain = (X4, ..., X)), tO
predict temperature f(x) with weather forecast
variable, we have
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C(x,x) C(x, Xtrain)

> =
C(Xtrain X ) C(Xerain Xerain) )

K= (ﬂ::zin)

Hence,

E(f(x) |ytrain)

= Ux — C(x: xtrain)c(xtrain: xtrain)_l(ytrain - I'ltrain)
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Var(f(x)lytrain)
=C(x,x) - C(x, xtrain)C(xtrainfxtrain)_lc(xtrain ,x)
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Ensemble Model Output Statistics
We view our true temperature T; as realizations from
a parametrized normal distribution:
T;~N(a + Bm;,y + 85s;)

Then we can find optimal values of parameters a, 8,y
and § by minimizing the negative log-likelihood:

(y + 8s)?

L _ 2
L(a,B,y,6) = %ZM + Zlog(y +68s;)

We can optimize by using automatic differentiation
and custom machine learning optimizers:
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Gradient Descent Steps
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