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Familial Hypercholesterolemia

❖ Genetic disorder causing very high LDL (“bad” 
cholesterol)

❖ 1/250 - 1/400 prevalence

❖ 90% undiagnosed

❖ Treatment by  latest generation of statins can help 
(PCSK9 inhibitors)



Cost structure

❖ Assume 1/100 patients in a lipid clinic are undiagnosed 
cases

❖ $300 for genetic test

❖ $10,000 for PCSK9 inhibitor, 1 year

❖ Net $40,000 to find and treat one patient, 75% to find



How can we bring cost down?

❖ Target genetic testing to enrich cases

❖ Assume a classifier with 50% PPV

❖ 1/2 tested patients are cases

❖ Net cost to find and treat one patient: $10,600



Electronic health records

❖ Where would the data come from?

❖ Electronic Health Records (EHRs) have been in use at 
Stanford Hospital for many years

❖ Increasing adoption in US (75%)



Data from Stanford Hospital’s EHR

❖ > 2 million patients

❖ Structured data (diagnosis, procedure, and medication 
codes) - 43 million records

❖ Unstructured data (free text clinical notes) - 42 million 
notes



But…

❖ 93 confirmed cases



Does this seem right?

❖ “Fruit” appearing in the clinical notes is a significant 
predictor…



Explicit incorporation of domain knowledge

❖ “automate” existing 
diagnosis guideline

❖ Extract features from EHR 
that approximate guideline 
inputs

❖ Fit a linear model on ~20 
features

Table 4.  Dutch Lipid Clinic Network diagnostic criteria for Familial Hypercholesterolemia1-3 

 Points

Criteria

Family history

First-degree relative with known premature* coronary and vascular disease, OR 1

First-degree relative with known LDL-C level above the 95th percentile

First-degree relative with tendinous xanthomata and/or arcus cornealis, OR 2

Children aged less than 18 years with LDL-C level above the 95th percentile

Clinical history

Patient with premature* coronary artery disease 2

Patient with premature* cerebral or peripheral vascular disease 1

Physical examination

Tendinous xanthomata 6

Arcus cornealis prior to age 45 years 4

Cholesterol levels mg/dl (mmol/liter)

LDL-C >= 330 mg/dL ( ≥8.5) 8

LDL-C 250 – 329 mg/dL (6.5–8.4) 5

LDL-C 190 – 249 mg/dL (5.0–6.4) 3

LDL-C 155 – 189 mg/dL (4.0–4.9) 1

DNA analysis

Functional mutation in the LDLR, apo B or PCSK9  gene 8

Diagnosis (diagnosis is based on the total number of points obtained)

Definite Familial Hypercholesterolemia   >8

Probable Familial Hypercholesterolemia 6 – 8

Possible Familial Hypercholesterolemia 3 – 5

Unlikely Familial Hypercholesterolemia   <3
               

* Premature = < 55 years in men; < 60 years in women
LDL-C = low density lipoprotein cholesterol; FH, familial hypercholesterolemia.
LDLR = low density lipoprotein receptor
Apo B = apolipoprotein B
PCSK9 = Proprotein convertase subtilisin/kexin type 9
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Transfer learning using EHR data

❖ Despite “millions of patients”, very few labels of things 
we care about. 

❖ Opportunity for transfer learning? 



Transfer Learning

❖ Models trained on ImageNet ILSVRC are very useful for 
other tasks with less data.

❖ Learn a model on a source task with lots of labels

❖ Use for a target task with few labels



Clinical text

❖ Focus on transfer learning using clinical text

❖ Clinical notes are most complete source of information

❖ but harder to use than medical codes

❖ Most applications of ML to EHR data uses structured 
data



Representing clinical notes

❖ Each patient has a 
sequence of notes

❖ Sebastien & Nathanael 
explored ways of 
summarizing this 
sequence



Representing clinical notes

❖ Baselines: bag of words, LDA

❖ Compare against: 

❖ Embed and aggregate

❖ RNN Sequence models



Predicting complex clinical events
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