ICME Expo 2017

Transfer Learning using Electronic Health Record data

Ken Jung, Shah Lab Stanford University School of Medicine

Thanks Sebastien & Nathanael!

Sebastien Dubois (ICME)

Nathanael Romano (MS&E)

Familial Hypercholesterolemia

- Genetic disorder causing very high LDL ("bad" cholesterol)
- * 1/250 1/400 prevalence
- 90% undiagnosed
- Treatment by latest generation of statins can help (PCSK9 inhibitors)

Cost structure

- Assume 1/100 patients in a lipid clinic are undiagnosed cases
- * \$300 for genetic test
- * \$10,000 for PCSK9 inhibitor, 1 year
- * Net \$40,000 to find and treat one patient, 75% to find

How can we bring cost down?

- Target genetic testing to enrich cases
- * Assume a classifier with 50% PPV
- * 1/2 tested patients are cases
- * Net cost to find and treat one patient: \$10,600

Electronic health records

- * Where would the data come from?
 - Electronic Health Records (EHRs) have been in use at Stanford Hospital for many years
 - * Increasing adoption in US (75%)

Data from Stanford Hospital's EHR

- > 2 million patients
- Structured data (diagnosis, procedure, and medication codes) 43 million records
- Unstructured data (free text clinical notes) 42 million notes

* 93 confirmed cases

Does this seem right?

 "Fruit" appearing in the clinical notes is a significant predictor...

Explicit incorporation of domain knowledge

- "automate" existing diagnosis guideline
- Extract features from EHR that approximate guideline inputs
- Fit a linear model on ~20 features

Table 4. Dutch Lipid Clinic Network diagnostic criteria for Familial Hypercholesterolemia¹⁻³

	Points
Criteria	
Family history	
First-degree relative with known premature* coronary and vascular disease, OR	1
First-degree relative with known LDL-C level above the 95th percentile	
First-degree relative with tendinous xanthomata and/or arcus cornealis, OR	2
Children aged less than 18 years with LDL-C level above the 95th percentile	
Clinical history	
Patient with premature* coronary artery disease	2
Patient with premature* cerebral or peripheral vascular disease	1
Physical examination	
Tendinous xanthomata	6
Arcus cornealis prior to age 45 years	4
Cholesterol levels mg/dl (mmol/liter)	
LDL-C >= 330 mg/dL (≥8.5)	8
LDL-C 250 – 329 mg/dL (6.5–8.4)	5
LDL-C 190 – 249 mg/dL (5.0–6.4)	3
LDL-C 155 – 189 mg/dL (4.0–4.9)	1
DNA analysis	
Functional mutation in the LDLR, apo B or PCSK9 gene	8
Diagnosis (diagnosis is based on the total number of points obtained)	
Definite Familial Hypercholesterolemia	>8
Probable Familial Hypercholesterolemia	6-8
Possible Familial Hypercholesterolemia	3 – 5
Unlikely Familial Hypercholesterolemia	<3

LDL-C = low density lipoprotein cholesterol; FH, familial hypercholesterolemia.

LDLR = low density lipoprotein receptor

Apo B = apolipoprotein B

PCSK9 = Proprotein convertase subtilisin/kexin type 9

^{*} Premature = < 55 years in men; < 60 years in women

Transfer learning using EHR data

- Despite "millions of patients", very few labels of things we care about.
- * Opportunity for transfer learning?

Transfer Learning

- Models trained on ImageNet ILSVRC are very useful for other tasks with less data.
- * Learn a model on a source task with lots of labels
- * Use for a target task with few labels

Clinical text

- * Focus on transfer learning using clinical text
- Clinical notes are most complete source of information
 - but harder to use than medical codes
 - Most applications of ML to EHR data uses structured data

Representing clinical notes

- Each patient has a sequence of notes
- Sebastien & Nathanael explored ways of summarizing this sequence

Representing clinical notes

- Baselines: bag of words, LDA
- Compare against:
 - Embed and aggregate
 - RNN Sequence models

Predicting complex clinical events

Acknowledgements

- Sebastien Dubois and Nathanael Romano
- ICME NVIDIA seed grant program
- * Familial Hypercholesterolemia Foundation

- * Josh Knowles MD, et al
- Nigam Shah