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Abstract

Transport emissions are one of the major contributors to the rise in air pollution

today. In several large urban areas, air pollution from traffic congestion con-

tributes to more than 2200 premature deaths annually and costs the health

system at least $18 billion. The development of models that allow the effec-

tive prediction of congestion and emissions on critical traffic corridors is crucial

in advancing and evaluating solutions that aim to mitigate environmental and

health consequences of traffic. We adopt a numerical analysis approach and

utilize partial differential equations (PDEs) as we are interested in exploring the

predictive capability of non linear PDE based traffic models.

One lane model

One of the earlier traffic models is known as the Lighthill-Whitham-Richards

(LWR) model. The LWR model was developed for unidirectional traffic on a single

road ([3, 4]) and is given by:

ut + (v(u)u)x = 0
u(x, 0) = u0(x) and u(0,t) = α for α∈R (1)

u(x, t) denotes the density of cars at position x on the road at time t ≥ 0.
u0(x) is the initial condition that models the initial distribution of density of

cars on the road.

u(0, t) = α indicates what the density of cars is at the entrance of the road.

v(u) denotes the velocity of cars on the road as a function of density of cars u
and expresses at what speed cars drive when the road has a density u of cars

on the road. The LWR model uses a linear velocity function. We develop a

non-linear velocity function, using a particle-based model, to better portray

velocity-density relations:

Figure 1. Plot of the linear velocity function v(u) = vmax(1 − u) and a non-linear velocity

function satisfying realistic driver behaviors with vmax = 65

Conditions on velocity functions for stability

The velocity functions needs to be monotonically non increasing and differen-

tiable.

We choose to ensure well-posedness of our problem through L1 stability. Given
two entropy solutions u(x, t) and ũ(x, t) of 1 with initial conditions u(x, 0) and
ũ(x, 0) respectively, the solutions have to satisfy L1 contractivity [2], that is:

‖u(x, t) − ũ(x, t)‖L1 ≤ ‖u(x, 0) − ũ(x, 0)‖L1 (2)

Differentiability and monotonicity are sufficient conditions to ensure L1 contrac-
tivity even for the multi-lane model including source terms [1].

Particle-based model and Modeling driver behaviors

We advance a particle-based model which uses Object Oriented Programming to

model cars and roads to simulate various driving situations to generate a velocity-

density function. To update a Car over time, there are various criteria that we

consider:

1. The second rule of space between a car and its neighbor: In California, it is

recommended to maintain a 3 second rule of space between a car and its

neighbor.

2. The variation between the velocity of a Car and the maximum speed limit on

the road vmax.

3. The variation between a Car’s velocity and the Car’s neighbor’s velocity.

4. The variation between a Car’s acceleration and the Car’s neighbor’s

acceleration.

We incorporate various driver behaviors:

1. Abidance by drivers of the maximum speed.

2. Focus uniquely on the front car.

3. Maintaining a second rule of space between cars depending on their level of

risk aversion.

4. Risk aversion in the intensity of acceleration.

Velocity-density profiles with various driver behaviors

Figure 2. Comparison of velocity-density functions with drivers following different second rules

Fitting function to the velocity profiles

We fit a differentiable and monotonically non-increasing velocity function v(u) to
ensure L1 contractivity: v(u) = (v̄ ? φε)(u) where φε(x) = 1

εφ(x
ε ), φ(x) a standard

symmetric Friedrichs mollifier and

v̄(u) =

{
vmax if u ≤ uc

K1( 1
uK2−1

)K3 if x > uc
(3)

Figure 3. Velocity-density data points with s0 = 2.0 along with the mollified fitted velocity

function with K1 = 7 and K2 = 7.0, ε = 0.01 and uc = 0.115 and K3 =
log(vmax

K1
)

log( 1
u
K2
c

−1)

PDE model results

Comparison between solutions of the PDEswith a linear and non-linearvelocity:

Figure 4. Solution of different Riemann problems where for the first problem, we have uL = 0.8,
uR = 0 and ubdy = 0.8 at t = 0.01 and for the second problem, we have uL = 0, uR = 0.8 and
ubdy = 0 at t = 0.03 using linear and non-linear velocity functions

Comparison between solutions of non-linear PDEs with different driver behav-

iors:

Figure 5. Solution of different Riemann problems where for the first problem, we have uL = 0.8,
uR = 0 and ubdy = 0.8 at t = 0.01 and for the second problem, we have uL = 0, uR = 0.8 and
ubdy = 0 at t = 0.0e using non-linear velocity functions portraying different driver behaviors.

Discussion of the results

1. Using the particle-based model, we see that for drivers that are comfortable

with a larger second rules, the point for which the velocity function start

decreasing from vmax shifts to the left in Figure 2.

2. For the PDE solutions, using the linear and non-linear velocity functions, we
obtain different solutions in 4:

For the first sub-plot, the rarefaction wave in the linear case assumes that all drivers in the

traffic jam drive at the same speed which is not realistic. In the non-linear case, the

expansion wave portrays how cars at the end of a traffic jam start driving fast first and the

other cars follow at a later time.

For the second sub-plot, the shock in the linear case moves faster than the shock in the

non-linear case.

3. Using the PDE model, we observe that we obtain distinct solutions in Figure

5 with velocity functions portraying different behaviors: different expansion

and shock speeds of the solutions that illustrate various level of driving

comforts, respectively.
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