

Problem Introduction

Synthetic Control: estimate the treatment effect for panel data. What's the counterfactual outcome? Synthetic (Regression) from control group.

California = 0.334* Utah+0.234*Nevada+...

What if I can decide who to treat

Synthetic Principle Compenent Design

Yiping Lu, Jiajin Li, Lexing Ying, Jose Blanchet. Contact: yplu@stanford.edu

Theory

Rank 1+noise

Globally solvable in this random data generating process. What does this means for Synthetic Control?

Inverse covariance matrix is rank 1 Only one feasible (error=0) experiment design for you data !

Normalized Variate

Theory for Phase Synchronization needs data generated from binary signal, however our data is not binary (have a weight w)

Idea: Normalize!

 $y_{k+1} = sgn[(Y^{T}Y + \lambda 11^{T})^{-1}y_{k}./d]$

We normalize the matrix via its diagonal entries (which is a good guess of the weight magnitude).

 $d = \sqrt{\operatorname{diag}((Y^{\mathsf{T}}Y + \lambda 11^{\mathsf{T}})^{-1})}$

Weaker assumptions for global convergence!

Numerical Results

Dataset: The Abadie–Diamond–Hainmueller Smoking Data More simulation see paper.