

Deep Learning Applications for Liquid Argon Time Projection Chamber-based Neutrino Detectors

Y. Chen, L. Dominé, F. Drielsma, Z. Hulcher, R. Itay, D.H. Koh, M. Lei, K. Terao, K.V. Tsang, T. Usher (for the DeepLearnPhysics Collaboration)

Neutrinos are...

Abundant Produced by the Big Bang, the sun, stars, supernovas, nuclear reactors, ... most abundant! Exact mass is unknown, but lightest of all particles. Light **Oscillating** between (at least) three flavors

- Ghosts that interact weakly and very rarely = hard to study
- to many physics puzzles such as matter-antimatter Key asymmetry, grand unification theories, etc

LArTPCs are precision neutrino detectors

SIMULATE

LIGHT Propagation with Implicit Neural Representation (SIREN) for Scalability

CHARGE Differentiable Simulation to extract model parameters from data

RECONSTRUCT

Convolutional and Graph Neural Networks for a hierarchical end-to-end reconstruction chain using sparse convolutions

ANALYZE

Uncertainty Quantification for Semantic Classification

Ensembling methods

Training multiple instances of the same architecture with different random initialization seeds Monte Carlo Dropout

Bayesian technique approximating the network's posterior distribution of class predictions through multiple forward passes of dropout regularized networks

Evidential Deep Learning

Model the posterior distribution analytically

REFERENCES

