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Error in mean (in %) ↓ 51.4 31.4

Time (in Sec.) ↓ 11777.5 3401.5Z
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II. Multi-fidelity Hamiltonian 
Monte Carlo (MFHMC)

I. Motivation

• Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth (1987) “Hybrid Monte Carlo”. Physics Letters B, 195(2):216–222, 198.
• Andrew Gelman, John B. B. Carlin, Hal S. S. Stern, and Donald B. B. Rubin (2014) “Bayesian Data Analysis”, Third Edition (Texts in Statistical Science). page 675.
• D. Patel, J. Lee, M. Forghani, M. Farthing, T. Hesser, P. Kitanidis, E. Darve “Multi-Fidelity Hamiltonian Monte Carlo Method with Deep Learning-based Surrogate", Second symposium on science-guided AI, 

AAAI Fall Symposium Series (FSS), 2021.

III. Ongoing Work

• Finding the values of parameters which are
responsible for the ignition success/failure is critical
for robust performance, optimization, and prediction.

• The goal of this work is to infer the probability
distribution of these parameters given the ignition
success/failure condition by casting this inference
problem in a Bayesian setting.

Key idea: Split the HMC algorithm in two stages:

Results on benchmark problems:
Darcy’s flow (experimentally obtained data)

1. Use a DNN-based 
surrogate in the first 
(HMC) stage (by 
leveraging automatic 
differentiation 
capability for efficient 
gradient computation)

2. Use HF numerical 
solver in the second 
stage of Metropolis-
Hastings step for 
accurate posterior 
sampling

𝛁𝒙𝐟 𝐱 is required.
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Posterior density: parameter space
(Laser location, geometry, mass inflow, …)

Challenges:

1. Impossible to compute for 
Black-box solvers 
(such as HTR)

2. Expensive gradient 
computation 
(1 gradient evaluation = 2 
forward solves)

3. Low statistical efficiency

−𝛁 ⋅ 𝒙 𝛁𝒚 = 𝒇𝒊 in Ω
𝒚 = g   on 𝜕Ω

Fixed stats. error HMC MFHMC

# of HF evaluations ↓ O(1000) O(100)

Statistical efficiency ↑ O(1e-5) O(1e-4)

• A multi-layer perceptron neural network is used as
a forward surrogate model to train different
operating conditions. Mainly, two laser
parameters, laser intensity and location, are used
to train the model with 1292 sample points.
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Current state-of-the-art:
• Markov Chain Monte Carlo (MCMC) method is a 

promising sampling technique to infer such 
probability distribution. However, it is intractable in 
high dimensional parameter space.

• Hamiltonian Monte Carlo (HMC) method makes such  
high-dimensional sampling possible by exploiting the 
geometry of the target probability distribution. 

Darcy’s flow (synthetic data)

For a fixed no. of HF evaluations:

For a fixed stats. error:


