
Federated Accelerated Stochastic Gradient Descent

Abstract
We propose Federated Accelerated Stochastic Gradient Descent (FᴇᴅAᴄ), 
the first principled acceleration of Federated Averaging (FᴇᴅAᴠɢ, also known 
as Local SGD), which provably improves convergence speed and 
communication efficiency on various types of convex functions. 
For example, for strongly convex and smooth functions, when using 𝑀
workers, the previous state-of-the-art FᴇᴅAᴠɢ analysis can achieve a linear 
speedup in 𝑀 if given 𝑀 rounds of synchronization, whereas FᴇᴅAᴄ only 
requires 𝑀!/# rounds. Moreover, we prove stronger guarantees for FᴇᴅAᴄ 
when the objectives are third-order smooth.

Theory: Setup
We consider the stochastic optimizationmin

$∈ℝ!
𝐹 𝑤 ≔𝔼'∼𝒟[𝑓 𝑤; 𝜉 ], where

1. 𝐹 is smooth and strongly convex

2. ∇𝑓 𝑤; 𝜉 has bounded variance

3. Each client can access ∇𝑓 𝑤; 𝜉 for independent sample 𝜉 drawn from (the 

same) distribution 𝒟

Algorithm: From FᴇᴅAᴠɢ to FᴇᴅAᴄ
• FᴇᴅAᴠɢ is the standard algorithm for Federated Optimization. Each

client runs a local SGD and is periodically synchronized by averaging.
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• 𝑤*+, ← 𝛽-!𝑤* + 1 − 𝛽-! 𝑤*
./

• 𝑤*0!
./ ← 𝑤*+, − 𝜂 ⋅ ∇𝑓 𝑤*+,; 𝜉*

• 𝑤*0! ← 1 − 𝛼-! 𝑤* + 𝛼-!𝑤*+, − 𝛾 ⋅ ∇𝑓 𝑤*+,; 𝜉*
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• We propose Federated Accelerated Stochastic Gradient Descent (FᴇᴅAᴄ).
• In FᴇᴅAᴄ, each client follows an accelerated SGD [Ghadimi et al., 2012] by 

maintaining a 3-tuple:

𝑤*

𝑤*
./

𝑤*+,

𝑤*0!
./

𝑤*0!

• During communication, both 𝑤* and 𝑤*
./ are averaged and broadcasted.

𝑤"#
𝑚-th client

𝑡-th iteration

FᴇᴅAᴠɢ [Khaled et al., 2020], 
[Woodworth et al., 2020]:
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1
𝑀𝑇

+
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+
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𝑇𝑅

FᴇᴅAᴄ (Theorem 3.1)

Theory: Results

• Similar models have been studied by existing works on FᴇᴅAᴠɢ e.g., [Stich et al.,
2019], [Khaled et al., 2020], [Woodworth et al., 2020]

• Commonly known as i.i.d. settings, where FᴇᴅAᴠɢ is also known as Local-SGD

𝑀: # of clients
𝑅 : # of sync. rounds
𝑇 : parallel runtime

• Achieve linear speedup in
𝑀 if the bound is
dominated by <𝒪 !

34
• Requires 𝑅 ∼ 𝑀 rounds 

to achieve linear speedup

• Requires only 𝑅 ∼ 𝑀!/#

rounds to achieve linear 
speedup in 𝑀.

• Acceleration saves 
communication!

We establish stronger guarantee for both algorithms if ∇(#)𝐹 is bounded

FᴇᴅAᴠɢ with bounded ∇(#)𝐹
(Theorem 3.4)

𝔼 𝐹 ⋅ − 𝐹∗ ≤ <𝒪
1
𝑀𝑇

+
1

𝑇7𝑅7

FᴇᴅAᴄ with bounded ∇(#)𝐹
(Theorem 3.3)

𝔼 𝐹 ⋅ − 𝐹∗ ≤ <𝒪
1
𝑀𝑇

+
1
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Algorithms Sync. Rounds (𝑅) required for linear speedup Reference

Strongly Convex General Convex

FᴇᴅAᴠɢ 𝑇!/7𝑀!/7 - [Sti19]
𝑇!/#𝑀!/# - [HKMC19]
𝑀 𝑇!/7𝑀#/7 [SK19][KMR20]

FᴇᴅAᴄ 𝑀!/# min {𝑇¼𝑀¾, 𝑇⅓𝑀⅔} This work
Stronger Guarantees when 𝛁(𝟑)𝑭 is bounded

FᴇᴅAᴠɢ max {𝑇-½𝑀½, 1} 𝑇!/7𝑀#/7 This work
FᴇᴅAᴄ max {𝑇-⅙𝑀⅙, 1} max {𝑇¼𝑀¼, 𝑇⅙𝑀½} This work

We also study the convergence rates for general smooth convex objectives F.
The results are summarized in this table.

Theory: Proof Sketch
Most analysis framework of Federated Algorithms (at least implicitly) requires the
stability of algorithms being parallelized
• For example, SGD is stable → FᴇᴅAᴠɢ can work🙂
• Unfortunately, standard Accelerated SGD is not stable enough
• In fact, we show that even deterministic standard Accelerated GD may not be
initial-value stable (Theorem 4.2)😞may be of individual interest

SGD → FᴇᴅAᴠɢ
slow but stable

Generalized AcSGD → Our FᴇᴅAᴄ
faster and stable 😁

Standard AcSGD
fastest but unstable

Our solution: acceleration-stability trade-off🤔

Experiments: FᴇᴅAᴄ vs FᴇᴅAᴠɢ & mini-batch

Observed linear speedup with respect to clients 𝑀 under various synchronization intervals 𝐾.

All 4 algorithms 
attain linear 
speedup when 𝐾 = 
1

FᴇᴅAᴠɢ and 
Minibatch-SGD loses 
linear speedup for 𝐾
as low as 8

Minibatch-
Accelerated-SGD 
drastically worsens 
for 𝐾 ≥ 64

FᴇᴅAᴄ 
outperforms the 
baselines for all 
tested 𝑴 and 𝑲.

We compare FᴇᴅAᴄ with three baselines: FᴇᴅAᴠɢ, the minibatch SGD with the same
rounds of communication (Mʙ-Sɢᴅ), and minibatch accelerated SGD (Mʙ-Aᴄ-Sɢᴅ).

• We also compared our principled FᴇᴅAᴄ with the vanilla version of FᴇᴅAᴄ without
the acceleration-stability trade-off.

• The result suggests direct Acceleration indeed suffers from instability, which
complements our study on the instability of accelerated SGD.

Experiments: Principled FᴇᴅAᴄ vs Vanilla FᴇᴅAᴄ 
• 𝑤* as main state,
• 𝑤*

./ as aggregated state
• 𝑤*+, as an auxiliary “middle state”


