The Price of Simplicity in the Stationary Prophet Inequality Problem

Kristen Kessel¹, in collaboration with Amin Saberi¹, Ali Shameli², & David Wajc¹ ¹Stanford University, ²Massachusetts Institute of Technology

Model

- Infinite horizon, continuous-time marketplace
- One seller of a single good, items of which are supplied & perish according to a Poisson process with rates $\lambda > 0$, $\mu = 1$
- *n* buyer types, where buyer type *i* arrives according to an independent Poisson process with rate $\gamma_i > 0$
- When buyer of type *i* arrives, he bids a fixed value v_i for the good and seller makes an irrevocable decision to either sell & collect v_i or to reject
- **Objective:** maximize seller's expected average revenue

Motivation: Optimal vs. Simple

Optimal Policy

- Generates maximum expected average revenue
- Lacks economic interpretation
- Potentially impractical to implement

"Simple" Policy

- Sub-optimal from revenue perspective?
- Strong economic interpretation
- Straightforward to implement

Fixed-threshold policy: seller sets a minimum price \bar{p} he is willing to accept for the good (sell iff $v_i \ge \bar{p}$)

Main Results

A new benchmark (*UB*):

$$\max \sum_{i} v_{i} \cdot x_{i}$$

s.t.
$$\sum_{i} x_{i} \leq \lambda$$
$$x_{i} \leq \gamma_{i} \cdot (1 - \exp(-\lambda))$$
$$x_{i} \geq 0$$

A fixed-threshold policy (FT):

let x^* be an optimal solution to UBfor arrival of buyer of type iif item available

sell to buyer w.p. $p_i \triangleq \frac{x_i^*}{\gamma_i \cdot (1 - \exp(-\lambda))}$

Theorem 1: Fixed-threshold policy FT is 1/2-competitive with the optimal offline policy.

Corollary: Inventory capacity of just 2 items is sufficient to guarantee FT is still 1/2-competitive.

Theorem 2: No online policy is better than 1/2-competitive with the optimal offline policy.

Proof Strategies

Theorem 1:

1. Prove $UB \ge OPT_{\text{offline}}$ 2. Prove $FT \ge 1/2 \cdot UB$ ()

$$(1) + (2) \Longrightarrow FT \ge 1/2 \cdot OPT_{\text{offline}}$$

Theorem 2:

Two buyer types:

- Rare big spender: $\gamma_1 = \epsilon$, $v_1 = 1 + \frac{1}{\epsilon}$
- Common miser: $\gamma_2 = \infty$, $v_2 = 1$ Prove $OPT_{online} \le 1/2 \cdot OPT_{offline}$

Techniques: queuing theory, continuous time Markov chain analysis, stochastic dominance

Acknowledgements

Thank you to PayPal for their generous support this year via the PayPal Innovation Scholars program!

