Skip to main content Skip to secondary navigation
Main content start
Adjunct Professor

Stefan Domino

Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)
Dr. Domino’s research interest rests within low-Mach fluid mechanics methods development for complex systems that drive the coupling of mass, momentum, species and energy transport. His core research resides within the intersection of physics model development, numerical methods research, V&V techniques exploration, and high performance computing and coding methods for low-Mach turbulent flow applications. Stefan also supports the co-teaching of ME469, Computational Methods in Fluid Mechanics, while continuing his primary career at Sandia National Laboratories as a Distinguished Member of the Technical Staff.

Education:

University of Utah
Ph.D. Department of Chemical Engineering, 1999
"Methods towards improved simulations for the oxides of nitrogen in pulverized-coal furnaces"
Professor Philip J. Smith, Advisor

Select Recent Publications:

* Hubbard, J., Hansen, M., Kirsch, J., Hewson, J., Domino, S. P., “Medium scale methanol pool fire model validation”, J. Heat Transfer, 2022, https://doi.org/10.1115/1.4054204.

* Barone, M., Ray, J., Domino, S. P., "Feature selection, clustering, and prototype placement for turbulence datasets", AIAA Journal, 2021, https://doi.org/10.2514/1.J060919.

* Domino, S. P., Hewson, J., Knaus, R., Hansen, M., "Predicting large-scale pool fire dynamics using an unsteady flamelet- and large-eddy simulation-based model suite", Physics of Fluids, 2021, https://doi.org/10.1063/5.0060267 (Editor's pick: August 4, 2021).

* Domino, S. P., "A case study on pathogen transport, deposition, evaporation and transmission: linking high-fidelity computational fluid dynamics simulations to probability of infection", Int. J. CFD, 2021, https://doi.org/10.1080/10618562.2021.1905801.

* Domino, S. P., Pierce, F., Hubbard, J., "A multi-physics computational investigation of droplet pathogen transport emanating from synthetic coughs and breathing", Atom. Sprays, 2021, https://doi.org/10.1615/AtomizSpr.2021036313.

* Jofre, L., Domino, S. P., Iaacarino, G., "Eigensensitivity analysis of subgrid-scale stresses in large-eddy simulation of a turbulent axisymmetric jet", Int. J. Heat Mass, 2019, https://doi.org/DOI:10.1016/J.IJHEATFLUIDFLOW.2019.04.014.

* Domino, S. P., Sakievich, P., Barone, M., "An assessment of atypical mesh topologies for low-Mach large-eddy simulation", Comp. Fluids, 2019, https://doi.org/10.1016/j.compfluid.2018.12.002.

* Domino, S. P., "Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach ", J. Comput. Physics, 2018, https://doi.org/10.1016/j.jcp.2018.01.007.

* Jofre, L., Domino, S. P., Iaacarino, G., "A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures", Flow Turb. Combust., 2018, https://doi.org/10.1007/s10494-017-9844-8.

CV: https://github.com/spdomin/Present/blob/master/cv/dominoCV.pdf